Tea: Points and Circles

Wessel Bruinsma

University of Cambridge, CBL

29 October 2021

Japanese puzzle designer Naoki Inaba (2008):
http://inabapuzzle.com/hirameki/suuri_4.html
Can
10 points randomly positioned in the plane always
be covered by non-intersecting unit circles?

- Fix 10 arbitrary points. Configuration of circles?
- Reasonable candidate: hexagonal circle packing. Offset x ?
- Use probability to show that appropriate x always exists!
- Technique called probabilistic method, pioneered by Paul Erdős.
(1) Consider random offset $x \sim$ Unif.
(2) Show that $\mathbb{P}($ all points covered $)>0$.
- Key observation:

$$
\mathbb{P}(\text { a single point covered })=\frac{\pi}{\sqrt{12}} \approx 0.9069
$$

Proof of $\mathbb{P}($ all points covered $)>0$

$$
\begin{aligned}
N & =\text { number of points covered }=\sum_{i=1}^{10} \mathbb{1}(\text { point } i \text { covered }) \\
\mathbb{E}[N] & =\sum_{i=1}^{10} \mathbb{E}[\mathbb{1}(\text { point } i \text { covered })]=\sum_{i=1}^{10} \mathbb{P}(\text { point } i \text { covered }) \approx 9.069 . \\
\mathbb{E}[N] & \left.=\sum_{i=1}^{10} \mathbb{P}(N=i) i . \quad \quad \text { (weighted average of } 1, \ldots, 10\right) \\
& \Longrightarrow \mathbb{P}(N=10)>0 .
\end{aligned}
$$

Therefore, with positive probability, $x \sim$ Unif covers all 10 points. In particular, an x that covers all 10 points exists!

Wrapping Up

- Yes, we can always cover 10 points with disjoint unit circles!
- Shown with the probabilistic method (Paul Erdős).
- Aloupis et al. (2012) refine the argument to 12 points.

Slides: https://wesselb.github.io/pdf/points-and-circles.

Appendix

References

Aloupis, G., Hearn, R. A., Iwasawa, H., \& Uehara, R. (2012). Covering points with disjoint unit disks. 34th Canadian Conference on Computational Geometry.

